10.1 C
New York
Friday, March 31, 2023

Say Hello to Stratolaunch, The Largest Airplane Ever Created

On December 13, 2011, Paul Allen, the reclusive billionaire and cofounder of Microsoft, stood in front of a group of reporters in Seattle and told them about his wild new plan.

Wearing the tech-Brahmin uniform of navy blazer, dress shirt, and conspicuously absent tie, Allen made some introductory remarks and then rolled a video simulation of a strange beast of an aircraft leaving an oversize hangar. This was Strato­launch. It would be the largest airplane, by wingspan, ever created. The twin-fuselage, catamaran-style aircraft would be a flying launchpad, its purpose to heave a half-million-pound rocket ship to cruising altitude and then drop it, whereupon the rocket would ignite its engines for a fiery ascent into space. Allen’s hope was that this extraordinary bird would be able to do quick laps between the ground and the stratosphere, making access to space no more exotic than a New York–to–Boston commuter flight.

Burt Rutan took the microphone next. Rutan, a gregarious designer of exotic aircraft, wore a light-blue work shirt and sported huge Elvis-style muttonchops. He was the original architect of the outlandish endeavor and the person who had sold Allen on the project. “Right here in front of us is a very large mistake,” he said, landing heavily on the word mistake and jabbing his finger at a model of the plane. The problem, he explained, was that no one in the room could possibly grasp how friggin’ big Stratolaunch would be. For them to have any sense, they’d have to understand that even a Boeing 747 would seem like a Tinkertoy in comparison. Rutan’s devilish grin said it all: This would be a plane to defy the imagination. The plane, he and Allen said, would take its first flight in 2015.

Three years past that target date, the plane finally exists, and as Rutan promised, it is one big mama. As I discovered, nothing—not even a Rutan-approved scale model—can prepare you for an encounter with it.

This past December I traveled to the Mojave Air and Space Port, a desert city of giant industrial structures in Southern California, where Stratolaunch was built. The plane’s facility on the eastern edge of the port stands out among the other structures. After walking through some drab offices, I was escorted into the approximately 100,000-square-foot hangar. The gleaming white Stratolaunch didn’t just fill the expanse; it reached into every corner of it. There was no way to take in the monster with a single glance. Starting near its tail, I walked through and around it, craning my neck and stretching on my tiptoes to gather mental snapshots of the two fuselages and the white drag strip of a wing and stitch them together into one panoramic picture.


Everything about Stratolaunch is supersized. It has six screaming Pratt & Whitney turbofan jet engines, salvaged from three 747s. Its maximum takeoff weight is 1.3 million pounds. It’s got more than 80 miles of wiring. Most astounding is its 385-foot wingspan, the spec that puts Stratolaunch in the history books. That number may not seem remarkable, but on a single airplane wing 385 feet is an eternity. It’s a football field plus the end zones and a little bit more. If the Wright brothers had begun their initial Kitty Hawk flight at the tip of one Stratolaunch wing, they could have completed the journey and done it twice more before they reached the other end.

Though the two fuselages look identical, only the right one has a cockpit, largely preserved from one of the 747s, with a throttle, foot pedal, and even some analog displays that a commercial pilot working in the 1970s might find familiar. One of the seats is covered by a sheepskin-like cushion of the type often found in New York City taxis. Looking out the window, the second fuselage is so far away that it looks like a plane sitting on an adjacent runway.

It’s hard to imagine this mammoth structure rising into the air. But the team—without Rutan, who retired in 2011—has been methodically taking it through a series of tests: bearing its own weight, firing its engines, taxiing down 2-plus miles of runway. Allen promises Stratolaunch will ascend as early as this fall.

Thousands of people will turn their eyes to Mojave when that first flight happens. But after that, what? The original plan was to create a more reliable and flexible way to shoot satellites into space. But while Stratolaunch’s development has dragged on, the private space industry has leaped ahead. Other billionaires, notably Elon Musk, have dazzled the world with fiery launches and wild achievements such as reusable rockets and orbiting sports cars. The industry is becoming increasingly competitive, and numerous companies are scheming to lower the cost and increase the reliability of rocket launches. Musk’s SpaceX was going to supply Allen with the rockets Strato­launch would carry, but it ditched the project years ago.

The mammoth aircraft inevitably brings to mind the Spruce Goose, the much-mocked giant airplane and pet project of tycoon Howard Hughes. Allen had visited the legendary plane in its home in an Oregon museum. That plane (it was actually made mostly of birch, not spruce) was intended to send supplies and soldiers to combat during World War II, but it flew only once, for just a mile, long after the conflict was over. Stratolaunch, too, could be obsolete before its massive wing ever reaches the sky. Is biggest better? Maybe. Maybe not.

But have you seen this thing?

As a teenager, Paul Allen was a sci-fi and rocketry nerd. He dreamed of becoming an astronaut, but that ambition was scuttled by nearsighted­ness. His childhood bedroom was filled with science fiction and space books. Bill Gates remembers Allen’s obsession. “Even when I first met him—he was in tenth grade and I was in eighth—he had read way more science fiction than anyone else,” says Gates, who later founded Microsoft with Allen. “Way more.” One of Allen’s favorites was a popular science classic called Rockets, Missiles, and Space Travel, by Willy Ley, first published in 1944. As Allen tells it in his memoir, he was crushed when he visited his parents as an adult and went to his old room to reference a book. He discovered that his mother had sold his collection. (The sale price: $75.) Using a blowup of an old photo of the room, Allen dispatched scouts to painstakingly re-create his boyhood library.

Allen never stopped thinking about space. In April 1981, during crunch time for Microsoft’s most important project—developing an operating system for the upcoming IBM personal computer—Allen up and left, joining a colleague on a field trip to Florida to see the first space shuttle launch. (Gates, for the record, still seems a bit annoyed about that.) “It was unbelievably impressive,” Allen says now of that launch. But he never seriously imagined getting involved in rocketry, until he met Burt Rutan.

Rutan had been hooked on airplanes since he was 8 years old. He started gaining recognition in the 1970s, selling plans for small aircraft that intrepid enthusiasts could build for themselves. His designs reimagined what a plane could be, changing up the placement of fins, wings, and even cockpits. In 1982 he started his company, Scaled Composites, in the California desert. He built planes that looked like praying mantises and others that had the whimsy of a Playmobil toy. (Five of his creations are now on display in the Smithsonian National Air and Space Museum.) The company changed ownership several times over the years, until Northrop Grumman acquired it a decade ago.

As Scaled Composites churned out cunning, award-winning designs, it became the aviation equivalent of Willy Wonka’s chocolate factory, staffed by stubborn outcasts who had been lured by the charisma of their iconoclast boss. “It was the dream job,” says Matt Stinemetze, Scaled’s chief engineer, who joined in his early twenties. “Burt was this legendary designer who designed all these home-builds that were weird and backward. It was almost like we always made these very different things because we could.”

By 1996, Allen, who had long since left Microsoft and was pursuing an eclectic range of investments (including snapping up the Portland Trail Blazers), had begun exploring the idea of delivering broadband from the sky. He heard about a Rutan creation he thought might be useful for this enterprise, and he flew to Mojave in his personal Boeing 757 to ask about it face-to-face. Nothing came of the conversation that day—except that Rutan learned Allen was a “space nut” with money to spend.

It was a fateful connection. A few years later, when Rutan was contemplating building the first private rocket that could send a human into space, he made a pilgrimage to Seattle to visit Allen. One aspect of his plan, he said, was to launch a manned spaceship from an airplane, not a launch pad. Rutan thought he could do it with less than $20 million.

Allen saw in Rutan’s idea an opportunity to open up space the same way he and Bill Gates had popularized computers. He agreed to fund the spaceship, and they closed the deal with a handshake. They also decided to enter the competition for the Ansari XPrize, which offered $10 million to the first team to send a person into suborbital space twice in two weeks using the same equipment.

Rutan called that effort SpaceShipOne. Richard Branson, another billionaire fascinated by space, and who knew Rutan, caught wind of it and raced to the Mojave. He chipped in $1 million in exchange for branding the rocket ship with the Virgin logo. Branson’s ultimate interest was space tourism—high-priced, suborbital thrill rides—and he felt that SpaceShipOnecould give him a high-profile start.

On September 29, 2004, a SpaceShipOne test pilot barely, but triumphantly, crossed the 62-mile border between Earth’s atmosphere and space. Five days later, another pilot repeated the trick. Rutan and Allen won the XPrize.

Allen’s excitement at the achievement was dampened by his increasing anxiety. The first few SpaceShipOne sorties were tense affairs, with unplanned spins and even a near-crash landing. The space shuttle Columbia’s fatal 2003 reentry into Earth’s atmosphere, which killed seven astronauts, was still fresh, and he was haunted by the prospect that they might lose one of the pilots. As Allen later wrote, when the rockets fired during the prize-winning SpaceShipOne flight, Branson asked him, “Isn’t this better than the best sex you’ve ever had?” Allen thought otherwise. “If I was this anxious during any kind of interpersonal activity, I couldn’t enjoy it very much,” he told himself. Branson wanted to license the SpaceShipOne technology from Allen for space tourism, and Allen agreed. Branson’s effort to develop Virgin Galactic ended up marred by two fatal accidents, the exact scenario that had frightened Allen. (Virgin Galactic is still planning to send customers for a 90-minute whirl.) Allen was out of the space race.

He turned his focus to his new institute on the human brain, a real estate push in his native Seattle, and a different kind of ship: his roughly 414-foot yacht, known as the Octopus.

Rutan, meanwhile, was thinking about the Brobdingnagian airplane that would eventually become Stratolaunch. In 1992 he had been summoned by Antonio Elias, a senior executive at a commercial space company called Orbital Sciences Corporation, to meet with a small group. Elias was exploring the idea of building a heavy spacecraft that could be launched from a giant airplane.

One problem with ground-based rockets is that they can take off from only a small number of facilities, like the Kennedy Space Center or Vandenberg Air Force Base, where competition for launch time creates long delays. A plane-based launch would create new possibilities.

But a plane that big had other challenges. Rutan’s analysis concluded that to deliver the weight of the rocket Elias was talking about—up to 640,000 pounds—you’d need a wingspan of almost 400 feet. That wing had to be strong too. In addition to two fuselages and tons of fuel, it would be carrying a set of jet engines and that massive vehicle. Rutan planned to build the plane from nonmetal composites, rather than aluminum, to keep the weight down, but making the composite strong enough presented another problem. Rutan solved this dilemma in part with a process called pultrusion, in which a machine pulls a material at a constant rate and then bakes it until it hardens, a way to mold huge segments of the plane with a consistent strength. This technique let the engineers manufacture the very long spars that fortify the giant wing.

Rutan began working on a design, even as he realized that the odds were against it ever being built. Using traditional construction methods and materials, the price tag might stretch past a billion, perhaps even reaching the cost of a nuclear aircraft carrier. He figured he could build it more cheaply, especially if he took his scavenger mentality to the limit. “I reasoned that if I could lift out engines, pylons, landing gear, actuators, electricals, and cockpit stuff from 747s, it was doable for us,” he says.

Over the next 20 years, Rutan worked with three prospective customers as he continued designing what he referred to as the Big Airplane. He won’t say who the customers were, but none of them took the step of commissioning it.

Then Allen decided to get back in the space business.

When I first talked to Allen, he was vague about why he decided to fund Stratolaunch. “I did my thing, we won the prize,” he says, speaking by video conference from Santa Fe, New Mexico, in the former home of Georgia O’Keeffe. It’s one of at least seven properties he owns. He’s seated with his legs stretched out on a deep couch, almost swallowed up by giant patterned seat cushions. I’m talking to him from Seattle, and I’m not sure if his lack of eye contact with me is a result of shyness or because my screen image isn’t aligned with the camera. “Burt Rutan planted a seed that he wanted to do something orbital with a scaled-up plane,” he finally says.

Allen later said he had another reason: He’d been watching as NASA pulled back on space operations and private businesses emerged to fill the gaps. The terrain was becoming irresistible, and he figured this was his opportunity.

Let Richard Branson offer suborbital thrill rides to civilians. Let Elon Musk go to Mars. Allen suspected there was another business proposition. The cost of building satellites was dropping as computers, cameras, and sensors became cheaper and more powerful. Their uses were growing too. They could be used to detect illegal ocean fishing—another Allen-funded project—or monitor humanitarian crises. If there were a reliable and thrifty way to launch satellites, people might come up with more uses, creating an even bigger market. That’s what happened with PCs.

Allen thought air launches could hasten that process. They are not as sensitive to weather as those held at traditional vertical launch facilities, allowing for more flexible takeoffs. They could also be more affordable, as the airplane can be reused many times. But no one had ever built an air-launch system capable of heaving super-heavy payloads into orbit.

Allen incorporated the Stratolaunch company and set about building the huge hangar for the plane in Mojave, next to Scaled Composites. (The plane’s original codename was Maliboo, but the Scaled Composites people called it Roc, after the giant bird of prey in Middle Eastern mythology. Rutan jokes that it’s really an acronym for Rutan’s on Crack.)

Allen was still queasy about putting lives in peril, but this time he had a rationale. “There’s a distinction between taking someone’s ticket for a joyride in space and having a commercial test pilot who knows the risk,” Allen says. Even so, he admits that it takes fortitude to send any human into the great void. “It’s different than having a bug in Microsoft Word or something,” he adds. “You have to be comfortable that something bad might happen—it’s a whole other level of anxiety.”

Though retired, Rutan still sits on the Strato­launch board. He makes a point to credit the designers at Scaled Composites, albeit in his own fashion: “Burt Rutan designed different configurations for the Big Airplane for over 20 years,” he says, referring to himself in the third person. “But Burt is not the designer of the airplane in Mojave now.”

That’s kind of a shame because, as Rutan describes it, his original vision for Stratolaunch was even more radical than the plane now in a hangar in the Mojave spaceport. He had situated the cockpit toward the tail, attached to a massive foil connecting the dual fuselages. The pilot’s placement at the back of the aircraft would offer a view of the rest of the vehicle, making it easier to control. Stratolaunch’s current CEO, Jean Floyd, explains that the designers determined that the rear cockpit and its foil put too much weight at the back of the plane, so they switched early on to a design where the two fuselages would be connected only by the main wing.

The team worked to speed up construction by using off-the-shelf parts whenever possible, the most conspicuous example being the repurposing of three 747s. But the surface of the plane had to be created from scratch. “This vehicle has some of the largest composite components ever built in the world, made by hand by fabricators, all made by our guys,” says Jacob Leichtweisz­-Fortier, who works on the plane. The most massive pieces were 285-foot spars that give the wing its resiliency, each one weighing 18,000 pounds. The team first constructed the wing out of the gargantuan spars and built the rest of the plane around it.

The plane’s extreme size led to some unexpected complications: The scaffolding needed to assemble the wing had to be about 40 feet high. “It starts to look like a building,” Stinemetze says. “In fact, the way California treats it, it is a building. It has to meet codes for sprinklers and electrical power.” When the plane was ready to emerge from its scaffolding and get towed out of the hangar, just lowering it 2 feet to the ground took eight hours, Floyd says.

While the plane was taking shape, Stratolaunch was struggling to find rockets to launch. For a few years, Allen’s company searched for a replacement for SpaceX and finally settled on the Pegasus XL rocket, built by Orbital ATK. (Orbital is also owned by Northrop Grumman.) But the choice of rocket was anticlimactic. More than 40 Pegasus rockets have already launched from the air, usually from a converted Lockheed L011 Tristar, a commercial airliner that is almost completely retired. It calls into question the whole Stratolaunch enterprise. Why build the world’s biggest aircraft just to launch a rocket with a small payload that can be shot off from a creaky out-of-service plane?

For Stratolaunch to fulfill its promise, Allen realized, he would have to build his own rockets. In 2016, Stratolaunch began that process. “At first we looked at using off-the-shelf engines, even rebuilding surplus space shuttle engines,” Allen says. But then the company’s engineers realized that new technologies, especially 3-D printing, would be more efficient. “You can just print these engines almost from scratch for so much less,” Allen says, estimating that a new engine can be printed for about a fifth of the cost of repurposing space shuttle overstock. Strato­launch formed a team of rocket designers, led by SpaceX’s former head of propulsion, Jeff Thornburg. The company will test its engines at a NASA facility in Stennis, Mississippi.

Sharing their road map publicly for the first time, Thornburg and Floyd laid out their plans for Stratolaunch: Its first custom rocket ship will be considerably bigger than the Pegasus, able to transport multiple satellites or other payloads. This medium-size rocket is nicknamed Kraken, after the legendary Icelandic sea monster. Floyd says customers will be able to use it to get satellites into low Earth orbit for less than $30 million, a competitive price and about half of what SpaceX charges for a launch of its Falcon 9 rocket. Floyd estimates that Kraken will be operational in 2022.

The next steps are more ambitious. In a project codenamed Black Ice, Stratolaunch is designing reusable space planes that will take off from the big airplane and go into orbit. The first one will be programmed to open its bay doors once in orbit and release its payload, perhaps even a fleet of satellites, into space. And then it will return to Earth. The idea is not all that different from the original space shuttle, which was a reusable vehicle that could also steer itself down from orbit to land on a runway. It can “come back and land at Mojave where the plane is waiting, the fuel system is waiting,” Floyd says. “You roll up underneath the plane, you refuel, you put the next payload in, and you go again.” Finally, Stratolaunch aims to build a second version of Black Ice that can carry astronauts. That ship won’t be flying for at least a decade.

But by then, who knows what Stratolaunch’s competitors will be up to? Though Allen reportedly plans to spend hundreds of millions of dollars on his space enterprise, and is its sole investor, billions are being plowed into companies such as Musk’s SpaceX and Jeff Bezos’ Blue Origin, both of which are trying to cut costs in the private space industry with reusable booster rockets that take off from the ground, not air launches. The companies have deals with NASA and commercial customers worth billions of dollars. Traditional defense contractors are also developing their own orbital rockets. And a new generation of people are thinking up new approaches to space. Earlier this year came news that a startup called SpinLaunch was developing a system in which a catapult-like contraption could efficiently zip satellites into orbit, aiming to cut prices to less than $500,000 per launch. Investors include Airbus Ventures and Kleiner Perkins.

Stratolaunch is not commenting on whether it has any customers signed up. Floyd suggests the business part of Stratolaunch is a work in progress. “They love this,” he says, “but this has to fly first.” In other words, get the thing in the air, then they’ll talk.

Flying the thing might be less of an issue than landing it. That’s what Chris Guarente, chief test pilot for Scaled Composites, tells me as I take Strato­launch to the skies. Virtually, at least. We are sitting in the cockpit of the Stratolaunch simulator, a few hundred feet away from the real thing in its giant hangar. I’m wearing a gray flight suit and a helmet. Guarente, known to everyone as Duff (a test pilot thing, I guess), is instructing me on how to use the standard 747 controls—throttle, pedals, yoke—to taxi down the long Mojave runway.

Even before we take off, I can see why Rutan thought of putting the cockpit in a tail section. It’s tricky to compensate for the fact that, while we are on the far right of the runway, seemingly only inches from the sands, the left fuselage is 100 feet away; yes, it’s coming with us. Finally, after our speed mounts on a very long taxi, I pull back the yoke and we slowly ascend. Ahead of us is a mountain range, maybe 5,000 feet high. My altimeter—one of those analog dials with a needle pointing to the number—keeps rising, and I’m up to 11,000 feet when we clear it. Duff instructs me to make some turns and see how the plane responds.

“Every objective you have during that flight is based on ‘What do I need to do to know I can land this airplane,’ ” says Duff, who flew F-16s in the military. On Stratolaunch’s maiden voyage, the pilots won’t even retract the landing gear. “It’s just one more thing that could go wrong,” Duff tells me. He repeats once more, as if I’d missed it, “The mission is to familiarize the pilot and make sure the airplane is capable of landing.”

I mention that it’s a bit alarming to hear him talk about the plane’s ability to land in the conditional. “We do believe it is capable of landing,” Duff says. “But this is the first time you find out if it really is.”

One tricky part of the landing, Scaled’s Stinemetze says, might be handling a touchdown from one side of an awkward two-fuselage configuration. “You can touch that other boom down before you’re on the ground, so there’s all these weird things that can happen,” he says.

The first flight is supposed to happen soon. Maybe September. Maybe a bit later. Next year they will see how the plane flies with a Pegasus attached. Once the plane takes off with a rocket in tow, the Scaled Composites contract could end, at which point Allen’s company would be the sole entity in charge of the aircraft. Stratolaunch will remain based at its Mojave hangar while its engineers prepare it for more tests. As early as 2020, the Stratolaunch crew will release the rocket from its hitch 35,000 feet over the Pacific Ocean. The rocket will ignite its boosters and begin a two-minute ascent into space.

For some members of the team that’s been building Stratolaunch for seven years, though, the rockets are an abstraction. “We just want to see this gigantic airplane fly,” says Niki Dugue, one of Scaled Composites’ engineers.

Allen isn’t one to show exuberance, and when he speaks about the plane he focuses on its future utility. “When you see that giant plane, it’s a little nutty,” he says. “And you don’t build it unless you’re very serious, not only about wanting to see the plane fly but to see it fulfill its purpose. Which is getting vehicles in orbit.”

Yet it’s pretty easy to fathom that building the world’s biggest plane is, for Allen, as much about an adventure worthy of the sci-fi books he painstakingly recovered after his mother sold them off.

It certainly was for Burt Rutan. “This airplane should be called the Savior,” he says. We are in his sprawling lakefront home in Coeur d’Alene, Idaho. Rutan calls it the “cabin.” The walls of his in-home museum are festooned with awards, mementos, and models of his creations. His trademark muttonchop sideburns are gray, but his wide blue eyes are still as vivid as high-­altitude sky.

To explain why he refers to Stratolaunch that way, the septuagenarian springs out of his chair and looks toward the ceiling with his jaw theatrically dropped, as if the double-­barreled white beast has suddenly appeared in his living room.

“Almost everybody who sees it for the first time says, ‘Jeeeee-zus Christ!’ ” he says, lifting his arms and shaking his hands in hosannas. “And that’s why you call it the Savior.”

It’s like the rockets hardly matter. Let the bird fly.

Steven Levy (@StevenLevy) wrote about Palmer Luckey’s virtual border wall in issue 26.07.

This article appears in the September issue. Subscribe now.

Listen to this story, and other WIRED features, on the Audm app.

Related Articles

Latest Articles